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Pseudo-spin as a relativistic symmetry
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Abstract. The existence of broken pseudo-spin symmetry in the Pb nucleus has been studied in the rela-
tivistic mean field approach using realistic Lagrangian parameters. Its relationship to spin orbit splitting
and the vanishingly small surface delta character of the mean spin orbit potential are investigated. In
the 208Pb nucleus the broken pseudo-spin doublets are found to exist above the neutron (proton) Fermi
surfaces.

PACS. 21.60.Cs Shell model – 21.10.-k Properties of nuclei; nuclei energy levels – 21.30 Nuclear forces

1 Introduction

In the light and heavy near spherical mass region of nu-
clei it has been observed that the pair of normal parity
orbitals (n, `, j = ` + 1

2 ) and (n − 1, ` + 2, j = ` + 3
2

in the major shells are nearly degenerate [1–4]. This ob-
served quasidegeneracy implies a symmetry called broken
pseudo-spin symmetry. Since jπ are conserved quantum
numbers for a nucleus, the pseudo angular momenta (˜̀,
s̃) satisfy j = ˜̀ + s̃. In order to interpret this near de-
generate pair of j = ` + 1/2 and j = ` + 3/2 as pseudo-
spin multiplets corresponding to j = ˜̀± 1/2, ˜̀ has to be
`+1. In the case of highly deformed heavy nuclei, pseudo-
spin orbit interaction is weak and the asymptotic Nils-
son pseudo-angular quantum numbers (Nnz, Λ,Ω) would
be valid and Ω= Λ ± 1/2 orbitals would be degenerate.
The implications of the pseudo-spin degeneracy is the ex-
istence of nuclear degenerate rotational bands based on
these intrinsic orbitals as observed in super deformed nu-
clei [4]. The early quantitative work in this mass region
has been based on the pseudo SU(3) model developed by
Ratna Raju et al [5]. The pseudo-spin symmetry is incor-
porated in this model. Nuclear many body techniques are
evolved in search of suitable approximation schemes by
transforming a given Hamiltonian using the pseudo-spin
transformations [6–9]. The existence of such a transfor-
mation operator was first dealt with in [3] and was explic-
itly developed for Nilsson type Hamiltonian. These models
were used successfully for the description of several nuclear
properties for the past twenty years. Among the recent
such non-relativistic developments are in [10,11]. Blokhin
et al [8,10] devised the approximate pseudo-spin trans-
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formation operator from the projection of the momentum
helicity states on to the oscillator states for arbitrary nu-
clear shapes. It simplifies the microscopic many body cal-
culations of heavy nuclei. The transformation technique is
useful in understanding the origin of the pseudo-spin sym-
metry and in finding out, how good the symmetry is. It is
expected that in the presence of two nucleon interaction
and deformed nuclear shape pseudo-spin symmetry may
be destroyed. These quantitative investigations reveal that
this symmetry is only slightly broken in the realistic many
body calculations [10,11]. It validates the single particle
and many particle pseudo-spin models.

In a recent paper [12] the author conjectured the ori-
gin of pseudo-spin symmetry as due to near equality in
magnitude of the attractive scalar σ and repulsive ω rela-
tivistic mean fields. In the present paper we check its va-
lidity within the Relativistic Mean Field (RMF) approach
that reproduces the other observed ground state proper-
ties of nuclei. The difference in the radial wave functions of
the pseudo-spin doublets, the relationships of pseudo-spin
symmetry to the spin orbit coupling strength and possi-
ble surface delta interaction structure and the behaviour
of the root mean square radii are also studied. In order
to find out its relationship to the nuclear interactions, the
variation of the pseudo-spin doublet splitting with the rel-
ative strengths of scalar and vector fields is investigated.
Wherever possible qualitative arguments are presented to
explain the results.

A brief description of RMF approximation and the rel-
evant Lagrangian parameters are given in Sec. 2. Inter-
pretation of the numerical results in terms of pseudo-spin
symmetry is contained in Sec. 3. Some analytic properties
are discussed in Sec. 4. The last Sec. 5, summarises the
results.
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2 Relativistic mean field approximation

A brief review of the RMF approximation is in order here.
The classical mean fields, scalar σ and vector ω are pro-
duced by the relativistic nucleon sources. The Lagrangian
density describing their dynamics is taken to be that con-
sidered by Walecka [13] (in the notations of [14]).

L = Lfree + Lint ; (1)

with

Lfree = LBfree + LMfree
. (2)

The free baryonic part is given by

LBfree = ψ̄ (iγµ∂µ − M)ψ ; (3)

and the mesonic part

LMfree
=

1
2
∂µσ∂µσ

− 1
2
mσ

2σ2 − 1
3
g2σ

3 − 1
4
g3σ

4

− 1
4
ΩµνΩµν +

1
2
m2
ωω

µωµ . (4)

The interaction part with the minimal coupling is

Lint = − gσψ̄iψiσ

− gωψ̄iγ
µψiωµ . (5)

Here Ωµν = ∂µων − ∂νωµ.
The variational nuclear many body wavefunction is a

Slater determinant of Dirac spinors. Since the exchange
contributions are neglected, the Hartree-approximation is
implied in the nucleon sector. The nucleus under consid-
eration is assumed to be spherical and its wavefunction is
assumed to be consistent with charge and time reversal
symmetry invariant. The variational approach then leads
to the following equations for the bound Dirac single par-
ticle orbitals and the classical meson fields.{

α(−ı∇) + βM(r) + V (r)
}
ψi(r) = εi ψi(r) . (6)

{
−∆ + m2

σ

}
σ(r) = −gσρs(r)

−g2σ
2(r) − g3σ

3(r) . (7){
−∆ + m2

ω

}
ω0(r) = −gωρv(r). (8)

Here the potential V (r), is given by

V (r) = gωω
0(r) + βgσσ(r) . (9)

The baryon currents and densities are defined as

ρs(r) =
A∑
i=1

ψ̄i(r)ψi(r) (10)

ρv(r) =
A∑
i=1

ψi
†(r)ψi(r) . (11)

The sums in the definitions of densities run over the nu-
cleon occupied orbitals only above the Dirac sea. The
Dirac equation is solved using the harmonic oscillator ba-
sis expansion method for the upper and lower components.

For spherically symmetric case the nucleon spinor
ψi(r, s, t) is chosen to be of the form

ψi(r, s, t) =
(
ψui
ψli

)
=
(
fi(r) Φ`ijimi(ϑ, ϕ, s)
igi(r) Φ˜̀

ijimi
(ϑ, ϕ, s)

)
χti(t) (12)

with

Φ`jm(ϑ, ϕ, s)

=
∑
msm`

〈
`m`

1
2
ms

∣∣∣∣ jm〉Y`m`(ϑ, ϕ)χms(s); (13)

where Y`m`(ϑ, ϕ) is the spherical harmonics and χti
(χms(s)) is the isospin (spin) part of the wave function
of the nucleon i. The orbital angular momenta `i and ˜̀

i

are determined by ji and the parity πi as

` = j + 1/2, ˜̀ = j − 1/2 for π = (−)j+1/2 (14)

and

` = j − 1/2, ˜̀ = j + 1/2 for π = (−)j−1/2
.(15)

The eigen values of the operator −β(Σ · L + 1) are
denoted by κ and they are given by

κ = ∓
(
j +

1
2

)
for j = `± 1

2
. (16)

Substituting this form of ψi in the Dirac equation (6),
one gets a coupled set of ordinary differential equations
in a single variable r, for the upper (fi) and lower (gi)
components of the Dirac spinor.

(M + u(r)) fi(r)−
(
∂r −

κi − 1
r

)
gi(r)

= εifi(r)(17)(
∂r +

κi + 1
r

)
fi(r)− (M + w(r)) gi(r)

= εigi(r) . (18)

Where u(r) = gσσ + gωω and w(r) = −gσσ + gωω. From
now on we suppress the superscript 0 and use ω in place
of ω0.

For the case of non-zero eigen values far away from
E = 0 the Dirac equation has to be solved numerically.
It is solved self-consistently by an iterative method for
the bound orbitals above the Dirac sea and for the corre-
sponding eigen values for a given spherical nucleus. Here
we use the NL1 set of Lagrangian parameters which suc-
cessfully reproduces the ground state properties of finite
nuclei over the entire periodic table [14].
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3 Interpretation of results in terms of
pseudo-spin symmetry

The search of pseudo-spin symmetry is carried out here
in the 208Pb nucleus. In order to find out the shapes and
strengths of the scalar and vector potentials from the nu-
merical solution of the RMF equations for the spherical
208Pb nucleus, following Koepf et al [15], the potentials
u(r) and w(r) are fitted to the Woods-Saxon shapes.

up(n)(r) =
V 0
p(n)

1 + exp
(
r − rp(n)

ap(n)

) , (19)

wp(n)(r) =
−λp(n)V

0
p(n)

1 + exp

(
r − rlsp(n)

alsp(n)

) . (20)

The strength parameters V 0
p(n) are taken to be smooth

functions of protons (neutrons) (Z(N)).

V 0
p(n) = V

(
1± χp(n)

N − Z
N + Z

)
. (21)

The radii rp(n) and r`sp(n) having the well known A depen-
dence.

rp(n) = r0p(n)A
1
3 (22)

r`sp(n) = r`s0p(n)
A

1
3 . (23)

The numerical values of the unknown parameters in the
potentials of Woods-Saxon shape are obtained for the La-
grangian parameter set NL1 and are listed in Table 1.
The scalar potential s(= gσσ) and the vector potential
v(= gωω) used in the solution of the Dirac equation are
obtained by using equations (19) and (20).

σ̄ = s =
[

(up + un)− (wp + wn)
4

]
(24)

ω̄ = v =
[

(up + un) + (wp + wn)
4

]
. (25)

The potentials s and v calculated from Eqs. (19)-(20) for
the 208Pb nucleus are shown in Fig. 1.

From Table 1 it is to be observed that the relativis-
tic (RMF) scalar and vector potentials for 208Pb nucleus,
have the Woods-Saxon shapes to very good accuracy. This
can also visually be seen from the fit presented in the Fig 1.
From Table 1 and equations (24) and (25) defining v and
s it is to be observed that the strength of s and v are
not equal, and they have opposite signs as expected. It
is found that v + 0.812s is zero. This curve is also shown
in Fig. 1. For the purpose of variation of the vector field
a parameter α is introduced through the relation v = αs
within the range −0.95 ≤ α ≤ −0.6. Here both v and s
have the same shape. The Dirac equation is numerically
solved for the values of α in the above range.

Fig. 1. The scalar potential s (MeV) and the vector potential
v (MeV) for the nucleus 208Pb

Table 1. Parameters of the Woods-Saxon potential for protons
(p) and neutrons (n) [15]

V χ λ r0 a rls0 als

(MeV) (fm)

p −71.28 0.462 8.97 1.25 0.612 1.14 0.647
n −71.28 0.462 11.12 1.233 0.615 1.144 0.648

The variation of the calculated neutron (proton) single
particle energies (MeV) with α are shown in Figs. 2 (3)
for the ground state of 208Pb. As seen from Figs. 2 and 3
all the bound single particle states are above the Dirac sea
and are far away from zero in the relativistic situation. It is
interesting to note that the valance levels bunch together
and approach nearly zero value for α around −0.812 the
realistic value. Further with the increase of α from the
realistic value, more and more single particle states lie in
the continuum.

The energy splitting ∆ps between pseudo-spin partners
as a function of α is plotted in Fig. 4. It reveals that for
realistic fields (v ' −0.812s), the splitting of the pseudo-
spin partners of the Dirac bound valence states is very
small compared to h̄ω (' 7MeV). For example the unoccu-
pied (particle) states show near degeneracy of the pseudo-
spin partners (4s1/2, 3d3/2) (3d5/2, 2g7/2) and (2g9/2,
1i11/2). In fact the maximum absolute value of the energy
splitting of these pseudo-spin partners is less than 1MeV,
except for (2g9/2, 1i11/2) involving the intruder states
where its value is close to −1.5MeV. The corresponding
near degeneracy is also observed between the pseudo-spin
partners for the hole states (proton particle states) (3p3/2,
2f5/2), (2f7/2, 1h9/2) and also for (3s1/2, 2d3/2), (2d5/2,
1g9/2). For example∆ps(4s1/2, 3d3/2) =∆ps(3d5/2, 2g7/2)
' 0.0 for α = −0.812, ∆ps(3p3/2, 2f5/2) ' 0.0 for
α = −0.845, ∆ps(2f7/2, 1h9/2) = ∆ps(3s1/2, 2d3/2) ' 0.0
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Fig. 2. The variation of the neutron single particle energies
(MeV)

for α = −0.90 and ∆ps(2d5/2, 1g7/2) ' 0.0 for α = −0.95.
Thus the near pseudo-spin degenerate pair of valence or-
bitals exist for the realistic value of α. Thus it is expected
that the pseudo-spin doublets shown in the figure will be
degenerate as α → −1.0 as remarked in [12]. Because in
this case a strong repulsive potential v is used which nearly
cancels the attractive potential s and therefore, all the
states are close to the continuum.

The important observations from Fig. 4 are the follow-
ing:

– The pseudo-spin splitting decreases with the increase
in radial quantum number n for the physical value of
α = −0.812.

– The pseudo-spin symmetry is seen to occur near the
Fermi surfaces of protons and neutrons in the 208Pb
nucleus and not close to the potential height.

The energy splitting ∆ps is smaller for higher value of n
(higher excited) pseudo-spin partner states than that of
the strongly bound (lower values of n) pseudo-spin dou-
blets. This can be understood from the fact that the term
that splits the pseudo-spin partners for a given ˜̀ has en-
ergy dependence E+(s+v) (see (27)) in the denominator.
For deeper lying states E is larger so the denominator be-
comes smaller in magnitude resulting in lerger pseudo-spin
splitting for a given ˜̀.

It is known that spin orbit splitting plays an impor-
tant role in the existence of pseudo-spin symmetry. And
in view of the correct prediction of the spin orbit split-

Fig. 3. The variation of the proton single particle energies
(MeV)

ting in the RMF [9,16], we study its variation with the
approachment towards the pseudo-spin symmetry limit.
For this point of view the spin orbit splitting is plotted in
Fig. 5 as a function of α. It is observed that for realistic
value α = −0.812, the spin orbit splitting is small (less
than 2.5 MeV) except for the orbitals (2g7/2, 2g9/2).

In order to search for the observable that is sensitive to
the occurrence of pseudo-spin symmetry the neutron (pro-
ton) root mean square radii rn(rp) are calculated. Their
variation with alpha is shown in Fig. 6. They are found to
increase faster for α ≤ −0.812 while they vary slowly for
α ≥ −0.812. This observation indicates the strong varia-
tion of the properties of the pseudo-spin partner orbitals
with α for the values of α ¿ −0.812. In order to verify
this point, the wave functions of the pseudo-spin part-
ners are plotted in the Figs.7–14. The upper and lower
components of the wavefunctions corresponding to differ-
ent pseudo-spin partners for the values of α=−0.812 and
α=−0.850 are shown in these figures. From these figures
it is clear that the nodes of the radial wavefunctions f
of the pseudo-spin partners differ by one unit as required
by the orthogonality conditions. The f corresponding to
the lower ` value having one node more than the f cor-
responding to ` + 2. This type of behaviour is seen in all
the cases studied here. It is found from these figures that
the lower components g are small and are of almost equal
in magnitude, with opposite signs. It is also seen that the
nodal points of f shifts at larger distances as the values
of α decrease from −0.812 to −0.850. It is an important



Y.K. Gambhir et al.: Pseudo-spin as a relativistic symmetry 259

Fig. 4. The variation of the energy splittings ∆ps (MeV) be-
tween the pseudo-spin partners for the nucleus 208Pb with α

Fig. 5. The variation of the spin orbit splittings (MeV) for the
nucleus 208Pb with α

observation that the lower component g approaches zero
as α → −1.0. It indicates that the orbit radii increase
for larger repulsive potential for the same attractive part
i.e., for v+s approaching zero. Some of these observations
were also noticed in [17].

Fig. 6. The variation of the point neutron (rn), proton (rp),
root mean square (rrms) radii (fm) for the nucleus 208Pb with α

Fig. 7. Dirac spinors f and g of the pseudo-spin partners 4s1/2

and 3d3/2 for the nucleus 208Pb for α = −0.812

4 Some analytic properties

It is easy to obtain a second order differential equation
for the lower component ψ`i of ψi by eliminating the up-
per component ψui from (6). In the case of a spherical
nucleus, the potentials s(r) and v(r) are functions only of
the magnitude r. Therefore, this equation takes the fol-
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Fig. 8. Dirac spinors f and g of the pseudo-spin partners 2f7/2

and 1h9/2 for the nucleus 208Pb α = −0.812

Fig. 9. Dirac spinors f and g of the pseudo-spin partners 2f7/2

and 1h9/2 for the nucleus 208Pb α = −0.850

lowing form:{
−∇2 +

s′ + v′

(s+ v) + E

(
∂

∂r
− 1
r

(σ · L)
)}

ψli

= (2− E − (v − s)) (E + (v + s))ψli . (26)

Using the definition κ̂ψ = −β(Σ · L + 1)ψ = κψ one

Fig. 10. Dirac spinors f and g of the pseudo-spin partners
3s1/2 and 2d3/2 for the nucleus 208Pb α = −0.812

Fig. 11. Dirac spinors f and g of the pseudo-spin partners
3s1/2 and 2d3/2 for the nucleus 208Pb α = −0.850

obtains the relations σ ·Lψli = (κi− 1)ψli and σ ·Lψui =
−(κi + 1)ψui . The above equation can be written as{

−∇2 +
s′ + v′

(s+ v) + E

(
∂

∂r
− 1
r

(κi − 1)
)}

ψli

= (2− E − (v − s)) (E + (v + s))ψli . (27)
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Fig. 12. Dirac spinors f and g of the pseudo-spin partners
2d5/2 and 1g7/2 for the nucleus 208Pb α = −0.812

Here s′ (v′) are the derivatives of s (v) with respect to
(w.r.t.) r and the binding energy E ≥ 0 measured w.r.t.
the nucleon mass M in the natural units h̄ = c = 1. For
the case of equal strengths, s+ v = 0, the (27) reduces to:

−∇2ψli + E(v − s)ψli = E(2− E)ψli . (28)

Clearly (28) has energy dependent potential (E(v−s))
and has eigen value E(2−E). After scaling the radial vari-
able r = x/(

√
E), the potential has a complicated (

√
E)

dependence i.e., −s
(
x/
√
E
)

+ v
(
x/
√
E
)

. In such a sit-
uation the (28) is not a normal Schrödinger eigen value
equation. Further it is obvious that E = 0 solution of this
equation exists and is not normalisable. Besides in that
case all states are degenerate. This equation is the same
as the (3) of [12] in the scaled variable x when written in
terms of the partial waves and use is made of the relation
`(`+ 1) = κ(κ− 1).

Similarly eliminating the lower component ψli we have
for the upper component ψui the following second order
differential equation,{

−∇2 − −s′ + v′

2− E − (−s+ v)

(
∂

∂r
− 1
r
σ · L

)}
ψui

= −(E + (s+ v))(2− (−s+ v)− E)ψui (29)

Using the relations obtained from the definition of κ̂, this
equation can be written in the form

Fig. 13. Dirac spinors f and g of the pseudo-spin partners
2d5/2 and 1g7/2 for the nucleus 208Pb α = −0.850

{
−∇2 − −s′ + v′

2− E − (−s+ v)

(
∂

∂r
+

1
r

(1 + κi)
)}

ψui

= −(E + (s+ v))(2− (−s+ v)− E)ψui (30)

The first observation of the energy dependent (27) and
(30) is that the spin orbit terms in these equations are pro-
portional to the derivative factor (±s′+v′) corresponding
to the lower and upper component second order equations.
From the radial shapes of s(r) and v(r) seen in Fig. 1 it is
clear that the spin orbit splitting is very sensitive to the
shape of the nuclear surface region. It is nearly zero inside
the nucleus and is sharply peaked in the surface region.
In fact it is zero inside the nucleus for a square well po-
tential shape and is non zero only on the nuclear surface.
The pseudo-spin symmetry is seen to occur near the Fermi
surfaces of protons and neutrons in 208Pb nucleus and not
close to the potential height.

5 Summary of the results

The possible existence of broken pseudo-spin symmetry
in 208Pb nuclei is investigated. The relativistic mean field
approximation is made to the many body problem de-
scribed by the Walecka Lagrangian. The parameters used
are those which fit the ground state data of the Pb nu-
cleus. Within this reliable many body frame work the exis-
tence of nuclear degenerate excited pseudo-spin partners
are predicted. Surprisingly the radial parts of the lower
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components of the Dirac spinors of these doublet states are
of near equal magnitude (although very close to zero) and
of opposite phase. The spin orbit RMF potential strongly
peaks in the nuclear surface region, since its radial depen-
dence has the expected factor (s′ + v′), the derivative of
the Woods-Saxon shape. Also its magnitude is small. In
fact it is zero inside the nucleus for a square well potential
and is non-zero only on the nuclear surface. This finding
shows the strong RMF (nuclear) potential shape depen-
dence of the existence of the broken pseudo-spin symme-
try. The correlation between the energy separation of the
doublet ∆ps to the spin orbit splitting ∆`s indicates that
for the small values of the the doublet separation ∆ps

the spin orbit separation is small. For 208Pb nucleus ex-
cited to the pseudo-spin symmetric state the root mean
square neutron proton radii are found to be very sensi-
tive to the deviation of the vector potential v = αs from
α = −0.812, the ground state value for the 208Pb nucleus.
They vary slowly for α > −0.812 while they increase much
faster for α < -0.812. This is the reflection of the sensi-
tivity of the pseudo-spin symmetry phenomenon to the
relative strength of the vector and scalar potentials and
their shapes.
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the structure of the wave functions. The financial support from
the Department of Science and Technology (DST) Government
of India is gratefully acknowledged.
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